Excel Rio S. Maylem, Ma. Elizabeth DC. Leoveras, Emma V. Venturina, Eufrocina P. Atabay, Edwin C. Atabay


The aim of this study was to identify the sperm subpopulation structure in buffalo bulls with high and low fertility and to determine how sperm subpopulations change after semen cryopreservation. Semen was obtained from four bulls with high fertility (HF) and four bulls with low fertility (LF) and was cryopreserved. A total of 64 ejaculates were assessed for their sperm kinematics using computer assisted sperm analyzer (CASA). Ward’s Hierarchical Dendogram and K-Means clustering method were used to identify the subpopulations. In experiment 1, two significantly different (P≤0.05) sperm subpopulations were observed: Subpopulation 1 (SP1): sperms travel longer distances most rapidly and progressively, and Subpopulation 2 (SP2): sperms travel shorter distances slower but highly progressive. A higher percentage of SP1 was found in HF bulls (47.27); whereas, a higher percentage of SP2 was found in LF bulls (54.89). A low negative relationship (r=-0.18) was observed for the fertility level and sperm subpopulation structure. This implies that sperms that travel longer distances most rapidly and progressively (SP1) are most likely associated to high fertility, while sperms that travel shorter distances slower but highly progressive (SP2) are associated with low fertility. In experiment 2, based on the change in SP1 after cryopreservation, significantly higher sperm survival was observed in samples from HF bulls (29.97) as compared to those from LF bulls (31.64). During post thaw, there were more SP1 sperms in samples from HF bulls (27.52) than in those from LF bulls (26.74). Thus, semen containing higher proportion of SP1 sperms are more resistant to cryopreservation and have greater chances of obtaining high fertility. Overall, the identification of sperm heterogeneity in water buffaloes can be associated to sperm survival after cryopreservation and fertility. 


El propósito de este estudio fue identificar la estructura de las subpoblaciones espermáticas en toros bufalinos con alta y baja fertilidad y determinar los cambios luego de la criopreservación. El semen se obtuvo de cuatro búfalos con alta fertilidad (HF) y cuatro con baja fertilidad (LF) y fue criopreservado. Un total de 64 eyaculados fueron evaluados para parámetros cinéticos usando un analizador espermático asistido por computadora (CASA). El método de dendograma jerárquico de Ward y el método K-means fueron utilizados para identificar las subpoblaciones. En el experimento 1, dos subpoblaciones espermáticas estadísticamente diferentes (p<0.05) fueron observadas: Subpoblación 1 (SP1): espermatozoides que viajan largas distancias más rápida y progresivamente, y la Subpoblación 2 (SP2): espermatozoides que viajan distancias cortas de forma lenta pero muy progresivamente. Un mayor porcentaje de SP1 fue encontrado en los búfalos HF (47,27); mientras que un mayor porcentaje de SP2 fue encontrado en los búfalos LF (54.89). Una relación baja pero negativa (r = -0,18) fue observada para el nivel de fertilidad y la estructura de la subpoblación espermática. Esto implica que los espermatozoides que viajan largas distancias más rápida y progresivamente (SP1) están más asociados a la alta fertilidad, mientras que los que viajan distancias cortas más lento y con alta progresividad (SP2) están asociados a una baja fertilidad. En el experimento 2, en base a los cambios en SP1 luego de la criopreservación, un mayor porcentaje de espermatozoides permaneció en esta subpoblación en los búfalos HF (27,52) que en los LF (26,74). Por lo tanto, semen con una alta proporción de espermatozoides dentro de SP1 son más resistentes a la criopreservación y tienen mayor probabilidad de obtener una mayor fertilidad. En general, la identificación de la heterogeneidad espermática en búfalos de agua puede ser asociada a la sobrevivencia luego de la criopreservación y a la fertilidad.

Texto completo:



Abaigar T, Holt WV, Harrison RA, del Barrio G. 1999. Sperm subpopulations in boar (Sus scrofa) and gazelle (Gazella dama mhorr) semen as revealed by pattern analysis of computer-assisted motility assessments. Biology of Reproduction 60(1): 32-41.

Abaigar T, Cano M, Pickard AR, Holt WV. 2001. Use of computer-assisted sperm motility assessment and multivariate pattern analysis to characterize ejaculate quality in mohor gazelles (Gazella dama mhorr): effects of body weight, electroejaculation technique and short-term semen storage. Reproduction 122(2): 265-273.

Amann RP. 1989. Treatment of Sperm to Predetermine Sex. Theriogenology 31(1): 49-60.

Awad MM. 2011. Effects of sub-optimal glycerol concentration and cholesterol-loaded cyclodextrin in a tris-based diluent on cryopreserved ram sperm longevity and acrosomal integrity. Small Ruminant Research 100(2-3): 164-168.

Bailey JL, Bilodeau JF, Cormier N. 2000. Semen Cryopreservation in Domestic Animals. Journal of Andrology 21(1): 1-7.

Barroso G, Morshedi M, Oehninger S. 2000. Analysis of DNA fragmentation, plasma membrane translocation of phosphatidylserine and oxidative stress in human spermatozoa. Human Reproduction 15(6): 1338-1344.

Cremades T. 2005. Kinematic changes during the cryopreservation of boar spermatozoa. Journal of Andrology 26(5): 610-618.

Curry,MR, Millar JD, Watson PF. 1994. Calculated optimal cooling rates for ram and human sperm cryopreservation fail to conform with empirical observations. Biology of reproduction 51(5): 1014-1021.

Dorado J, Molina I, Muñoz-Serrano A, Hidalgo M. 2010. Identification of sperm subpopulations with defined motility characteristics in ejaculates from florida goats. Theriogenology 74(5): 795-804.

Ferraz MA, Morató R, Yeste M, Arcarons N, Pena AI, Tamargo C, Hidalgo CO, Muiño R, Mogas T. 2014. Evaluation of sperm subpopulation structure in relation to in vitro sperm-oocyte interaction of frozen-thawed semen from Holstein bulls. Theriogenology 81(8): 1067-1072.

Freitas ML, Silva Bouéres C, Goncalves de Oliveira FJ, De Oliveira Viu MA, Arruda de Oliveira R. 2015. Comparison of two different centrifugation extenders for preservation of frozen equine semen. Equine Veterinary Education 27(8): 410-413.

Galli C, Lazzari G. 1996. Practical aspects of IVM-IVF in cattle. Animal Reproduction Science 42(1-4): 371-379.

Kumar D, Kumar P, Singh P, Yadav SP, Sarkar K, Bharadwaj A, Yadav PS. 2014. Characteristics of frozen thawed semen in predicting the fertility of buffalo bulls. Indian Journal of Animal Sciences 84(4): 389-392.

Martinez-Pastor F, Tizano EJ, Garde JJ, Anel L, De Paz P. 2011. Statistical series: opportunities and challenges of sperm motility subpopulation analysis. Theriogenology 75(5): 783-795.

Muiño R, Tamargo C, Hidalgo CO, Peña AI. 2008. Identification of sperm subpopulations with defined motility characteristics in ejaculates from Holstein bulls: effects of cryopreservation and between-bull variation. Animal Reproduction Science 109(1-4): 27-39.

Núñez-Martínez I, Moran JM, Peña FJ. 2006. A three-step statistical procedure to identify sperm kinematic subpopulations in canine ejaculates: changes after cryopreservation. Reproduction in Domestic Animals 41(5): 408-415.

Quintero-Moreno A, Miró J, Rigau AT, Rodríguez-Gil JE. 2003. Identification of sperm subpopulations with specific motility characteristics in stallion ejaculates. Theriogenology 59(9): 1973-1990.

Quintero-Moreno A, Rigau T, Rodríguez-Gil JE. 2004. Regression analyses and motile sperm subpopulation structure study as improving tools in boar semen quality analysis. Theriogenology 61(4): 673-690.

Ramón M, Soler AJ, Ortiz JA, Garcia-Alvarez O, Maroto-Morales A, Roldan ER, Garde JJ. 2013. Sperm population structure and male fertility: an intraspecific study of sperm design and velocity in red deer. Biology of Reproduction 89(5):1-7.

Rencher AC. 2005.A Review Of Methods of Multivariate Analysis, Second Edition. IIE Transactions 37(11):1083-1085.

Shojaei H, Kroetsch T, Wilde R, Blondin P, Kastelic JP, Thundathil JC. 2012. Moribund sperm in frozen-thawed semen, and sperm motion end points post-thaw and post-swim-up, are related to fertility in holstein AI bulls. Theriogenology 77(5):940-951.

Sundararaman MN, Edwin MJ. 2008. Changes in motility characteristics of goat spermatozoa during glycerol-equilibration relevance to cryopreservation. Asian Journal of Cell Biology 3(1):22-33.

Sundararaman MN, Kalatharan J, Thilak Pon Jawahar K. 2012. Computer assisted semen analysis for quantification of motion characteristics of bull sperm during cryopreservation cycle. Veterinary World 5(12): 723-726.

Ward PI. 1998. Intraspecific variation in sperm size characters. Heredity 80(Pt 6): 655-659.

Watson PF. 1995. Recent developments and concepts in the cryopreservation of spermatozoa and the assessment of their post-thawing function. Reproduction, Fertility and Development 7(4): 871-891.

Vale WG. 1997. News on reproduction biotechnology in males. Proceedings of the V World Buffalo Congress. Caserta, Italy: 103-123.

Yániz JL, Palacín I, Vicente-Fiel S, Sánchez-Nadal JA, Santolaria P. 2015. Sperm population structure in high and low field fertility rams. Animal Reproduction Science 156:128-134.

Enlaces refback

  • No hay ningún enlace refback.

URL de la licencia:

ISSN: 2542-3045

Journal of Veterinary Andrology is a peer-reviewed, No-fee Open-access journal.  

Journal of Veterinary Andrology does not charge any publication fees to authors.

The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions


Licencia Creative Commons Atribución 4.0 Internacional.

JOURNAL OF VETERINARY ANDROLOGY esta indexada en/ is indexed in:

Índice y Biblioteca Electrónica de Revistas Venezolanas de Ciencias y Tecnología (REVENCYT). Código RVJ002

International Scientific Indexing (ISI)

Scientific Indexing Services. Journal ID 3410

International Institute of Organized Research (I2OR)

Directory of Open Access Scholarly Resources (ROAD)

BASE (Bielefeld Academic Search Engine)

Directory of Research Journals Indexing (DRJI)

Actualidad Iberoamericana

Directory of Open Access Journals (DOAJ)