EFECTO MACHO EN EL DESARROLLO EMBRIONARIO/MALE EFFECT IN EMBRYONIC DEVELOPMENT

FRANCISCO BÁEZ CONTRERAS, PATRICIA VILLAMEDIANA MONREAL

Resumen


Las pérdidas tempranas de gestaciones son la causa más frecuente del fracaso de los sistemas de producción agropecuarios. Esta pérdida está relacionada con la pobre capacidad de desarrollo y calidad de los embriones. Se creía que la mortalidad embrionaria en mamíferos estaba estrechamente relacionada con el factor de infertilidad en la hembra y que el macho sólo se limitaba a aportar el material genético para el nuevo individuo y donación de los centrosomas. Existen cada vez más evidencias, que relacionan esta mortalidad con anormalidades en el espermatozoide que incluyen el estado de la cromatina, anomalías cromosómicas, agentes ambientales e infecciosos, que al momento de la fecundación pueden afectar la supervivencia embrionaria. Sin embargo, en muchos casos, las anomalías detectadas corresponden a un síntoma más amplio de daños subyacentes. La conformación estructural y funcional del espermatozoide se ve influenciada por varios factores y de existir un efecto macho sobre el desarrollo normal del embrión, dicho efecto está estrechamente relacionado con la calidad espermática. Aunque los procedimientos de FIV tienen mucho éxito, el conocimiento científico actual aún está lejos de identificar todos los procesos moleculares que ocurren durante las primeras etapas de la fusión de dos gametos que dan origen a una nueva vida. En esta revisión se ofrece una descripción de los conocimientos actuales, la aplicación y los avances de las tecnologías reproductivas con el propósito de aclarar el aporte del macho sobre el desarrollo embrionario.

Early pregnancy losses are the most common causes of failure in animal production systems. This loss is related to poor embryonic development potential and embryo quality. It was believed that embryo mortality in mammals was closely related to female infertility and that the male only supplied the genetic material for the new individual as well as the centrosomes. There is growing evidence that this mortality is associated with sperm abnormalities including the state of chromatin, chromosomal abnormalities, environmental and infectious agents, which can affect embryo survival at the time of fertilization. However, in many cases, the detected abnormalities represent a symptom of a wider underlying damage. The structural and functional conformation of the sperm is influenced by several factors, and if a male effect should exist on the normal development of the embryo, it would be closely related to sperm quality. Although IVF procedures are very successful, scientific knowledge is still far from complete to identify all the molecules and processes involved during the first stages of the fusion of the two gametes to bring forth a new life. In this review, an overview of the current knowledge, applications, and advancement of reproductive technologies in order to clarify the contribution of the male on embryonic development, will be presented.


Texto completo:

PDF ESPAÑOL

Referencias


Agarwal A., Allamaneni S. 2004. The effect of sperm DNA damage on assisted reproduction outcomes. A review. Minerva Ginecologica 56:235-245.

Anifandis G., Dafopoulos K., Messini C., Polyzos N., Messinis I. 2013. The BMI of men and not sperm parameters impact on embryo quality and the IVF outcome. Andrology 1:85-89.

Anzar M., He L., Buhr M., Kroetsch T., Pauls K. 2002. Sperm apoptosis in fresh and cryopreserved bull semen detected by flow cytometry and its relationship with fertility. Biology of Reproduction 66:354-360.

Aston K., Uren P., Jenkins T., Horsager A., Cairns B., Smith A. Carrel D. 2015. Aberrant sperm DNA methylation predicts male fertility status and embryo quality. Fertility and Sterility 104:1388–97.

Barros C., Pegorer M., Vasconcelos J., Eberhardt B., Monteiro F. 2006. Importance of sperm genotype (indicus versustaurus) for fertility and embryonic development at elevated temperatures. Theriogenology 65:210-218.

Benchainb M., Braun V., Lornage J., Hadj S., Salle B., Lejeune H., Guerin J. 2003. Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique. Human Reproduction 18:1023-1028.

Bennetts L., Aitken R. 2005. A comparative study of oxidative DNA damage in mammalian spermatozoa. Molecular Reproduction Development. 71:77-87.

Boissonneault G. 2002. Chromatin remodeling during spermatogenesis: a possible role of the transition protein in DNA strand break repair. FEBS Letters 514:111-114.

Borini A., Tarozzi N., Bizarro D., Bonu M., Fava L., Flamigni C., Coticchio G. 2006. Sperm DNA fragmentation: paternal effect on early post-implantation embryo development in ART. Human Reproduction 21:2876-2881.

Braga D., Setti A., Figueira R., Iaconelli A., Borges, E. 2015. The negative influence of sperm cryopreservation on the quality and development of the embryo depends on the morphology of the oocyte. Andrology 3:723 [Abstract].

Brito L., Barth A., Bilodeau-Goeseels S., Panich P., Kastelie J. 2003. Comparison of methods to evaluate the plasmalemma of bovine sperm and their relationship with in vitro fertilization rate. Theriogenology 66:1185-1193.

Cesari A., Kaiser G., Mutto A., Vicenti A., Fornes M., Alberio R. 2006. Integrated morphophysiological assement of two methods for sperm selection in bovine embryo production in vitro. Theriogenology 66:1185-1193.

Chenoweth P. 2005. Genetic sperm defect. Theriogenology 64:457-468.

Chenoweth P. 2007. Influence of male on embryo quality. Theriogenology 68:308-315.

Comizzoli P., Marquant-Le B., Heyman Y., Renard J. 2000. Onset of the first S-phase is determined by a paternal effect during the G1-phase in bovine zygotes. Biology of Reproduction 62:1677-1684.

Contri A., Gloria A., Robbe D., Valorz C., Wegher L., Carluccio A. 2013. Kinematic study on the effect of pH on bull sperm function. Anima Reproduction Science 136:252-259.

Córdova-Izquierdo A., Oliva J., Lleó B., García-Artiga C., Corcuera B., Pérez-Gutiérrez J. 2006. Effect of different thawing temperatures on the viability, in vitro fertilizing capacity and chromatin condensation of frozen boar semen packaged in 5 ml straws. Animal Reproduction Science 92:145-154.

D’Occhio M., Hengstberger K., Johnston S. 2007. Biology of sperm chromatin structure and relationship to male fertility and embryonic survival. Animal Reproduction Science 101:1-17.

De Jonge C. 2000. Paternal contributions to embryogenesis. Reproduction Medical Review 8:207-214.

De Jonge C. 2005. Biological basis for human capacitation. Human Reproduction Update11:205-214.

França L., Avelar G., Almeida F. 2005. Spermatogenesis and sperm transit through the epidymis in mammals with emphasis on pigs. Theriogenology 65:300-318.

Gadella B., Boerke A. 2016. An update on post-ejaculatory remodeling of the sperm surface before mammalian fertilization. Theriogenology 85:113-124.

García-Macías V., Martínez-Pastor F., Álvarez M., Garde J., Anel E., Anel L., De Paz P. 2006. Assement of chromatin status (SCSA®) in epididymal and ejaculated sperm in Iberian red deer, ram and domestic dog. Theriogenology 66:1921-1930.

Gualtieri R., Barbato V., Fiorentino I., Braun S., Rizos D., Longobardi S., Talevi R. 2014. Treatment with zinc, D-aspartate, and coenzyme Q10 protects bull sperm against damage and improves their ability to support embryo development. Theriogenology 82:592-582.

Gürler H., Malama E., Heppelmann M., Calisici O., Leiding C., Kastelic J., Bollwein H. 2016. Effects of cryopreservation on sperm viability, synthesis of reactive oxygen species and DNA damage of bovine sperm. Theriogenology

doi: 10.1016/j.theriogenology.2016.02.007.

Hammadeh M., Strehler E., Zeginiadau T., Rosenbaum P., Schimidt W. 2001. Chromatin decondensation of human sperm in vitro and its relation to fertilization rate after ICSI. Archives of Andrology 47, 83-87.

Hartshorne G. 2000. Embryo. Human Reproduction 15:31-41.

Haugan T., Reksen O., GrÖhn Y., Kommisrud E., Ropstad E., Sehested E. 2005. Seasonal effects of semen colletion and artificial insemination on dairy cow conception. Animal Reproduction Science 90:57-71.

Hernández-Ocha L., Sánchez-Gutiérrez M., Solís-Heredia M., Quintanilla-Vega B. 2006. Spermatozoa nucleus takes up lead the epididymal maturation altering chromatin condensation. Reproductive Toxicology 21:171-178.

Hernández-Ochoa L., García-Vargas G., López-Carrillo L., Rubio-Andrade M., Moran-Martínez J., Cerbrián M., Quintanilla-Vega B. 2005. Low lead environmental exposure alters semen quality and sperm chromatin condensation in northern Mexico. Reproductive Toxicology 20:221-228.

Januskauskas A., Zilinskas H., 2002. Bull semen evaluation post-thaw and relation of semen characteristics to bull´s fertility. Veterinarija ir zootechika 17 (39).

Johnson L., Varner D., Roberts M., Smith T., Keillor G., Scrutchfield W. 2000. Efficiency of spermatogenesis: a comparative approach. Animal Reproduction Science 60–61:471–480.

Karabinus D., Vogler Ch., Saacke R., Evenson D.1997. Chromatin Structural Changes in Sperm After Scrotal Insulation of Holstein Bulls. Journal of Andrology 18: 549-555.

Kasimanickam R., Nebel R., Peeler I., Silvia W., Wolf K., McAllister A., Cassell B. 2007. Breed differences in competitive indices of Holstein and Jersey bulls and their association with sperm DNA fragmentation index and plasma membrane integrity. Theriogenology 66: 1307-1315.

Kato Y., Shoei S., Nagao Y. 2011. Capacitation status of activated bovine sperm cultured in media containing methyl-β-cyclodextrin affects the acrosome reaction and fertility. Zygote 19:21- 30.

Khalifa T., Rekkas C., Lymberopoulos A., Sioga A., Dimitriadis I., Papanikolaou T. 2008. Factors affecting chromatin stability of bovine spermatozoa. Animal Reproduction Science 104 (2-4):143-63.

Kierszenbaum A. 2001. Transition nuclear proteins during spermiogenesis: unrepaired DNA breaks not allowed. Molecular Reproduction and Development 58:357-358.

Larson K., De Jonge C., Barnes A., Jost L., Evenson D., 2000. Sperm chromatin structure assay parameters as predictors of failed pregnancy following assisted reproductive techniques. Human Reproduction 15:1717-1722.

Lechniak D., Pers-Kamczyc E., Pawlak P. 2008. Timing of the first zygotic cleavage as a marker of developmental potential of mammalian embryos. Reproductive Biology 1:23-42.

Lee H., Kim S., Ji D., Kim Y. 2009. A comparative study of Sephadex, glass wool and Percoll separation techniques on sperm quality and FIV results for cryopreserved bovine semen. Journal Veterinary Science 10:249-255.

Lodge J., Fechheimer N., Jaap R. 1971. The relationship of in vivo sperm storage interval to fertility and embryonic survival in the chicken. Biology of Reproduction.5:252-257.

Lonergan P., Fair, T. 2008. In vitro-produced bovine embryos: dealing with the warts. Theriogenology 69:17-22.

Lonergan P., Rizos D., Gutiérrez-Adán A., Fair, T., Boland, M. 2003. Oocyte and embryo quality: effect of origin, culture conditions and gene expression patterns. Reproduction in Domestic Animals 38:259-267.

Maxwell W., Quintana-Casares P., Setchell B. 1992. Ovulation rate, fertility, and embryo mortality in ewes mated to rams from two different strains. Proceedings of the Australian Society of Animal Production 19:192-194.

Meirelles F.V., Caetano A.R., Watanabe Y.F., Ripamonte P., Carambula S.F., Merighe G.K., Garcia S.M. 2004. Genome activation and developmental block in bovine embryos. Animal Reproduction Science 82-83:13-20.

Morris I., Ilott S., Dixon L., Brison D. 2002. The spectrum of DNA damage in human sperm assessed by single cell gel electrophoresis (comet assay) and its relationship to fertilization and embryo development. Human Reproduction 17:990-998.

Morris L., Randall A., King W., Johson W., Buckell B. 2003. The contribution of male to ovine embryogenesis in an in vitro embryo production system. Animal Reproduction Science 75:9-26.

Nakai M., Ito J., Kashiwazaki N., Men N., Tanihara F., Noguchi J., Kaneko H., Onishi A., Kikuchi K. 2016. Treatment with protein kinase C activator is effective for improvement of male pronucleus formation and further embryonic development of sperm-injected oocytes in pigs. Theriogenology 85:703-708.

Ohgoda O., Niwa K., Yuhara M., Takahshi S., Kanoya K. 1988. Variations in penetration rates in vitro of bovine follicular oocytes do not reflect conception rates after artifical insemination using frozen semen from different bulls. Theriogenology 29:1375-1381.

Parrish J. 2014. Bovine in vitro fertilization: In vitro oocyte maturation and sperm capacitation with heparin. Theriogenology 81:67-73.

Paulson R., Milligan R., Sokol R. 2001. The lack of influence of age on male fertility. American Journal of Obstetrics and Gynecology 5:819-824.

Phillips N., Mcgowan M., Johnston S., Mayer D. 2004. Relationship between thirty post-thaw spermatozoal characteristics and the field fertility of 11 high-use Australian dairy AI sires. Animal Reproduction Science 81:47-61.

Pujol A., Durban M., Benet J., Boiso I., Calafell J., Egozcue J., Navarro J. 2003. Multiple aneuploidies in the oocytes of balanced translocation carriers: a preimplantation genetic diagnosis study using first polar body. Reproduction 126:701-711.

Rockett J., Mapp F., Garges B., Lutf C., Mori C., Dix D. 2001. Effect of hyperthermia on spermatogenesis, apoptosis, gene expression, and fertility in adult male mice. Biology of Reproduction 65:229-239.

Rodríguez-Villamil P., Hoyos-Marulanda V., Martins J., Oliveira A., Aguiar L., Moreno F., Velho A., Monteiro-Moreira A., Moreira R., Vasconcelos I., Bertolini M., Moura A. 2016. Purification of binder of sperm protein 1 (BSP1) and its effects on bovine in vitro embryo development after fertilization with ejaculated and epididymal sperm. Theriogenology 85:540-554.

Saacke R., Dalton J., Nadir S., Nebel R., Bame J. 2000. Relationship of seminal traits and insemination time to fertilization rate and embryo quality. Animal Reproduction Science 60-61:663-677.

Schneider C., Ellington J., Wright R. 1999. Relationship between bull field fertility and in vitro embryo production using sperm preparation methods with and without somatic cell co-culture. Theriogenology 51:1085-1098.

Sirard M., Richard F., Blondin P., Robert C. 2006. Contribution of the oocyte to embryo quality. Theriogenology 65:126-136.

Smorag Z., Bocheneck M., Wojdan Z., Sloniewski K., Reklewski Z. 2000. The effect of sperm chromatin structure on quality of embryos derived from superovulated heifers. Theriogenology 53:201 [abstract].

Spanó M; Bonde J., Hjøllund H; Kolstad H., Cordelli E; Leter G. 2000. Sperm chromatin damage impairs human fertility. Fertility and Sterility. 73:43-50. [Abstract].

Sugimura S., Akai T., Hashiyada Y., Somfai T., Inaba Y., Hirayama M., Yamanouchi T., Matsuda H., Kobayashi S., Aikawa Y., Ohtake M., Kobayashi E., Konishi K., Imai K. 2012. Promising system for selecting healthy in vitro–fertilized embryos in cattle. PLoS ONE 7:e36627.doi:10.1371/journal.pone.0036627

Urner F., Sacas D. 1999. Characterization of glycolysis and pentose phosphate pathway activity during sperm entry into the mouse oocytes. Biology of Reproduction. 60:973-978.

Van Soom A., Mateusen B., Leroy J., De Kruif A. 2003. Assessment of mammalian embryo quality: what can we learn from embryo morphology? Reproductive BioMedicine Online 7:664-670.

Vandaele L., Mateusen B., Maes D. De Kruif A., Van Soom A. 2006. Is apoptosis in bovine in vitro produced embryos related to early developmental kinetics and in vivo bull fertility?. Theriogenology 65:1691-1703.

Verberckmoes S., Soom A., De Pauw I., Dewulf A., De Kruif A. 2002. Migration of bovine spermatozoa in a synthetic medium and its relation to in vivo bull fertility. Theriogenology 58:1027-1037.

Walters A., Eyestone W., Saacke R., Pearson R., Gwazdauskas F. 2004. Sperm morphology and preparation method affect bovine embryonic development. Journal of Andrology 25:554-563.

Walters A., Saacke R., Pearson R., Gwazdauskas F. 2005. The incidence of apoptosis after IVF with morphologically abnormal bovine spermatozoa. Theriogenology 64:1404-1421.

Ward F., Rizos D., Boland M., Lonergan P. 2003. Effect of reducing sperm concentration during IVF on the ability to distinguish between bulls of high and low field fertility: word in progress. Theriogenology 59:1575-1584.

Ward F., Rizos D., Corridan D., Quinn K., Boland M., Lonergan P. 2001. Paternal influence on time of first embryonic cleavage pots insemination and the implications for subsequent bovine embryo development in vitro and fertility in vivo. Molecular Reproduction and Development 60:47-55.

Ward W., Kishikawa H., Akutsu H., Yanagimachi H., Yanagimachi R. 2000. Further evidence that sperm nuclear proteins are necessary for embryogenesis. Zygote 8:51-56.

Warzych E., Peippo J., Szydlowski M., Lechniak D. 2007. Supplements to in vitro maturation media effect the production of bovine blastocyst and their apoptotic index but not the proportions of matured and apoptotic oocytes. Animal Reproduction Science 97:334-343.

Wrathall A., Simmons H., Van Soom A. 2006. Evaluation of risk of viral transmission to recipients of bovine embryos arising from fertilization with virus-infected semen. Theriogenology 65:247-274.

Yadav B., King W., Betteridge K. 1993. Relationships between the completion of first cleavage and the chromosomal complement, sex, and developmental rates of bovine embryos generated in vitro. Molecular Reproduction and Development 36:434-439.

Zhao M., Shirley C., Yu Y., Mohapatra B., Zhang Y., Unni E., Deng J., Arango N., Terry N., Weil M., Russell L., Behringer R., Meistrich M. 2001. Targeted disruption of the transition protein 2 gene affects sperm chromatin structure and reduces fertility in mice. Molecular and Cellular Biology 21:7243-7255.

Zidi-Jrah I., Hajlaoui A., Mougou-Zerelli S., Kammoun M., Meniaoui I., Sallem A., Brahem S., Fekih M., Bibi M., Saad A., Ibala-Romdhane S. 2016. Relationship between sperm aneuploidy, sperm DNA integrity, chromatin packaging, traditional semen parameters, and recurrent pregnancy loss. Fertility and Sterility 105:58-64.


Enlaces refback

  • No hay ningún enlace refback.




ISSN: 2542-3045

Journal of Veterinary Andrology is a peer-reviewed, No-fee Open-access journal.  

Journal of Veterinary Andrology does not charge any publication fees to authors.

The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions

 

Licencia Creative Commons Atribución 4.0 Internacional.

JOURNAL OF VETERINARY ANDROLOGY esta indexada en/ is indexed in:

Índice y Biblioteca Electrónica de Revistas Venezolanas de Ciencias y Tecnología (REVENCYT). Código RVJ002

International Scientific Indexing (ISI)

Scientific Indexing Services. Journal ID 3410

International Institute of Organized Research (I2OR

Directory of Open Access Scholarly Resources (ROAD)

BASE (Bielefeld Academic Search Engine)

Directory of Research Journals Indexing (DRJI)

Actualidad Iberoamericana

Directory of Open Access Journals (DOAJ)

International Veterinary Information Service (IVIS)

Matriz de Informacion para el Análisis de Revistas (MIAR)

Scientific Journal Impact Factor (SJIF)

CiteFactor Academic Scientific Journals

Resultado de imagen para revencyt

  Resultado de imagen para international scientific indexing)

 Resultado de imagen para Scientific Indexing Services 

 

 

 

 

Directory of Research Journals Indexing Logo

 

 International Veterinary Information Service - IVIS 

logo

Resultado de imagen para SJIFactor